93 research outputs found

    Psychiatric comorbidity and suicide risk in patients with chronic migraine

    Get PDF
    The aim of this study was to explore the impact of mental illness among patients with migraine. We performed MedLine and PsycINFO searches from 1980 to 2008. Research has systematically documented a strong bidirectional association between migraine and psychiatric disorders. The relationship between migraine and psychopathology has often been clinically discussed rather than systematically studied. Future research should include sound methodologically-based studies focusing on the interplay of factors behind the relationship between migraine, suicide risk, and mental illness

    POLARIX: a pathfinder mission of X-ray polarimetry

    Full text link
    Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 arcmin ×\times 15 arcmin and with an energy resolution of 20 % at 6 keV. The Minimum Detectable Polarization is 12 % for a source having a flux of 1 mCrab and 10^5 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher.The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75 % open to the community while 25 % + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument.Comment: 42 pages, 28 figure

    Scientific report of the project COMpton Polarimeter with Avalanche Silicon readout (COMPASS)

    Get PDF
    Rendicontazione scientifica mandata all'INAF alla conclusione del progetto COMpton Polarimeter with Avalanche Silicon readout (COMPASS), finanziato dal bando TECNO INAF 2014COMpton Polarimeter with Avalanche Silicon readout (COMPASS) is a research and development project that aims to measure the polarization of X-ray photons through Compton Scattering. The measurement is obtained by using a set of small rods of fast scintillation materials with both low-Z (as active scatterer) and high-Z (as absorber), all read-out with Silicon Photomultipliers. By this method we can operate scattering and absorbing elements in coincidence, in order to reduce the background. This is the scientific report submitted to INAF at the end of the COMPASS project, funded through the grant TECNO INAF 201

    XIPE: the X-ray Imaging Polarimetry Explorer

    Full text link
    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus and two additional GPDs filled with pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 % at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil).Comment: 49 pages, 14 figures, 6 tables. Paper published in Experimental Astronomy http://link.springer.com/journal/1068

    Calibration of the IXPE instrument

    Get PDF
    IXPE scientific payload comprises of three telescopes, each composed of a mirror and a photoelectric polarimeter based on the Gas Pixel Detector design. The three focal plane detectors, together with the unit which interfaces them to the spacecraft, are named IXPE Instrument and they will be built and calibrated in Italy; in this proceeding, we will present how IXPE Instrument will be calibrated, both on-ground and in-flight. The Instrument Calibration Equipment is being finalized at INAF-IAPS in Rome (Italy) to produce both polarized and unpolarized radiation, with a precise knowledge of direction, position, energy and polarization state of the incident beam. In flight, a set of four calibration sources based on radioactive material and mounted on a filter and calibration wheel will allow for the periodic calibration of all of the three IXPE focal plane detectors independently. A highly polarized source and an unpolarized one will be used to monitor the response to polarization; the remaining two will be used to calibrate the gain through the entire lifetime of the mission

    IXPE instrument integration, testing and verification

    Get PDF
    The Imaging X-ray Polarimetry Explorer (IXPE) is a scientific observatory with the purpose of expand observation space adding polarization property to the X-ray source's currently measured characteristics. The mission selected in the context of NASA Small Explorer (SMEX) is a collaboration between NASA and ASI that will provide to observatory the instrumentation of focal plane. IXPE instrument is composed by three photoelectric polarimeters based on the Gas Pixel Detector (GPD) design, integrated by INFN inside the detector unit (DU) that comprises of the electrical interfaces required to control and communicate with the GPD. The three DUs are interfaced with spacecraft through a detector service unit (DSU) that collect scientific and ancillary data and provides a basically data handling and interfaces to manage the three DUs. AIV has been planned to combine calibration of DUs and Instrument integration and verification activities. Due the tight schedule and the scientific and functional requirements to be verified, in IAPS/INAF have been assembled two equipment's that work in parallel. The flight model of each DU after the environmental tests campaign was calibrated on-ground using the Instrument Calibration Equipment (ICE) and subsequently integrated in the instrument in the AIV-T process on a AIV and Calibration Equipment (ACE), both the facilities managed by Electrical Ground Support Equipment (EGSE) that emulate the spacecraft interfaces of power supply, functional and thermal control and scientific data collection. AIV activities test functionalities and nominal/off-nominal orbits activities of IXPE instrument each time a calibrated DU is connected to DSU flight model completing step by step the full instrument. Here we describe the details of instrumentation and procedures adopted to make possible the full integration and test activities compatibly with calibration of IXPE Instrument
    corecore